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Chiral Perturbation Theory, the 1/Nc expansion

and Regge behavior determine the structure of the lightest scalar meson
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The leading 1/Nc behaviour of Unitarised Chiral Perturbation Theory distinguishes the nature
of the ρ and the σ: The ρ is a qq meson, while the σ is not. However, semi-local duality between
resonances and Regge behaviour cannot be satisfied for larger Nc, if such a distinction holds. While
the σ at Nc = 3 is inevitably dominated by its di-pion component, Unitarised Chiral Perturbation
Theory also suggests that as Nc increases above 6-8, the σ may have a sub-dominant qq fraction up
at 1.2 GeV. Remarkably this ensures semi-local duality is fulfilled for the range of Nc . 15 − 30,
where the unitarisation procedure adopted applies

PACS numbers: 11.15.Pg, 12.39.Mk, 12.40.Nn, 13.75.Lb

I. INTRODUCTION

Long ago Jaffe [1] identified the distinct nature of
mesons: those built simply of a quark and an antiquark,
and those with additional qq pairs. Of course, even well
established qq resonances, like the ρ and ω, spend part of
their time in four and six quark configurations as this is
how they decay to ππ and 3π respectively. However, the
1/Nc expansion [2] provides a method of clarifying such
differences. If we could tune Nc up from 3, we would see
that an intrinsically qq state would become narrower and
narrower. As Nc increases, the underlying pole, which
defines the resonant state, moves along the unphysical
sheet(s) towards the real axis. In contrast a tetraquark
state would become wider and wider and its pole would
effectively disappear from “physical” effect: if only we
could tune Nc .

A long recognised feature of the world with Nc = 3
is that of “local duality”[3–5]. In a scattering process,
as the energy increases from threshold, distinct resonant
structures give way to a smooth Regge behaviour. At low
energy the scattering amplitude is well represented by a
sum of resonances (with a background), but as the en-
ergy increases the resonances (having more phase space
for decay) become wider and increasingly overlap. This
overlap generates a smooth behaviour of the cross-section
most readily described not by a sum of a large number
of resonances in the direct channel, but the contribution
of a small number of crossed channel Regge exchanges.
Indeed, detailed studies [4, 6] of meson-baryon scattering
processes show that the sum of resonance contributions
at all energies “averages” (in a well-defined sense to be
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recalled below) the higher energy Regge behaviour. In-
deed, these early studies[3, 4] revealed how this property
starts right from πN threshold, so that this “local du-
ality” holds across the whole energy regime. Thus reso-
nances in the s-channel know about Regge exchanges in
the t-channel. Indeed, these resonance and Regge com-
ponents are not to be added like Feynman diagram con-
tributions, but are “dual” to each other: one uses one
or the other. Indeed, the wonderful formula discovered
by Veneziano [7] is an explicit realisation of this remark-
able property. This has allowed the idea of “duality”
first found in meson-nucleon reactions to be extended
to baryon-antibaryon reactions, as well as to the sim-
pler meson-meson scattering channel we consider here[8].
Unlike the idealised Veneziano model with its exact lo-
cal duality, the real world, with finite width resonances,
has a “semi-local duality” quantified by averaging over
the typical spacing of resonance towers defined by the
inverse of the slope of relevant Regge trajectory.
Regge exchanges too are built from qq and multiquark

contributions. In a channel like that with isospin 2 in
ππ scattering, or isospin 3/2 in Kπ scattering, there are
no qq resonances, and so the Regge exchanges with these
quantum numbers must involve multi-quark components.
Data teach us that even at Nc = 3 these components
are suppressed compared to the dominant qq exchanges.
Semi-local duality means that in π+π− → π−π+ scatter-
ing, the low energy resonances must have contributions to
the cross-section that “on the average” cancel, since this
process is purely isospin 2 in the t−channel. The mean-
ing of semi-local duality is that this cancellation happens
right from ππ threshold.
Now in ππ scattering below 900 MeV, there are just

two low energy resonances: the ρ with I = J = 1 and the
σ with I = J = 0. In the model of Veneziano, where res-
onances contribute as delta-functions, exact local duality
is achieved by the σ and ρ having exactly the same mass,
and the coupling squared of the σ is 9/2 times that of the
ρ. Of course, the Veneziano amplitude is too simplistic
and does not respect two body unitarity. Yet neverthe-
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less, in the real world with Nc = 3 with finite width res-
onances “semi-local” duality is at play right from thresh-
old. There is a cancellation between the ρ with a width
of 150 MeV, which is believed to be predominantly a
qq state, and the σ, which is very broad, at least 500
MeV wide, with a shape that is not Breit-Wigner-like,
and might well be a tetraquark, molecular [9] or gluonic
state [10, 11], or possibly a mixture of all of these. Its
short-lived nature certainly means it spends most of its
existence in a di-pion configuration. The contribution of
these two resonances to the π+π− cross-section do in-
deed “on average” cancel in keeping with I = 2 exchange
in the t−channel. However, such a distinct nature for
the ρ and σ would prove a difficulty if we could increase
Nc . A tetraquark σ would become still broader and its
contribution to the cross-section less and less, while its
companion the ρ would become more delta-function-like
and have nothing to cancel. Semi-local duality would fail.
The correct Regge behaviour would not be generated . It
would just be a feature of the world with Nc = 3 and not
for higher values. Yet our theoretical expectation is quite
the contrary, the multiquark Regge exchange should be
even better suppressed as Nc increases above 3. This
paradox clearly poses a problem for the description of
the σ as a non-qq state. The aim of this paper is to
show how unitarised chiral perturbation theory provides
a picture of how this paradox is resolved.

Chiral Perturbation Theory (χPT) [12] provides a sys-
tematic procedure for computing processes involving the
Goldstone bosons of chiral symmetry breaking, partic-
ularly pions. The domain of applicability is naturally
restricted to low energies where the pion momenta p and
the pion mass mπ are much less than the natural scale
of the theory specified by the pion decay constant fπ
scaled by 4π, i.e. 1 GeV. The presence at low energies of
elastic resonances, like the ρ and σ, means that the uni-
tarity limit is reached at well below this scale of 1 GeV.
Consequently, the fact that χPT satisfies unitarity order-
by-order is not sufficiently fast for these key low energy
resonances to be described beyond their near threshold
tails. Much effort has been devoted to accelerating the
process of unitarisation [13–19]. Low orders in χPT must
already contain information about key components at all
orders for unitarisation to be achieved. It surely pays
to sum these known contributions up even when work-
ing ostensibly at low orders in perturbation theory. One
method for achieving a Unitarised Chiral Perturbation
Theory (UChPT) is the Inverse Amplitude Method [13–
15, 20]. This is based on the very simple idea that in
the region of elastic unitarity, the imaginary part of the
inverse of each partial wave amplitude is determined by
phase space — dynamics resides in the real part of the
inverse amplitude. This procedure leads naturally to res-
onant effects in the strongly attractive I = 0 and I = 1
channels. At tree level χPT involves just one parame-
ter, the pion decay constant. However, at higher orders
new Low Energy Constants (LECs) enter in the pion-pion
scattering amplitudes : 4 at one loop order [12], 6 more

at two loops [21], etc. These have to be fixed from ex-
periment. Clearly, the predictive power of the theory, so
apparent at tree level, where every pion process just de-
pends on the scale set by fπ, becomes clouded as higher
loops become significant with the LECs poorly known.
While the elastic Inverse Amplitude Method delays the
onset of these new terms with their additional LECs, this
is still restricted to the region below 1 GeV (or 1.2 GeV if
the IAM is used within a coupled channel formalism, al-
though this has other problems not present in the elastic
treatment – see [18]).

A beauty of Chiral Lagrangians is that the Nc de-
pendence of the parameters is determined. Every LEC,
starting with fπ has a well-defined leading Nc behaviour
[12, 22], for instance, fπ ∼

√
Nc . At one loop order with

central values for the LECs, one of us (JRP) has studied
unitarised low energy ππ scattering as Nc increases [23],
showing how the ρ does indeed become narrower (as ex-
pected of a qq resonance). In contrast, at least for not
too large Nc, the σ pole became wider and moved away
from the 400 to 600 MeV region of the real energy axis,
as anticipated by a largely qqqq nature. As we shall dis-
cuss, and as already introduced, this means that for the
central values and most parameter space, the semi-local
duality implicit in Finite Energy Sum Rules (FESRs) is
not satisfied as Nc increases.

Subsequently, one of us (JRP) together with Rios
showed [24] that the Nc behaviour becomes more subtle
when two loop χPT effects are included. In particular,
for the best fits of the unitarised two loop χPT, there
is a qq component of the σ, which while sub-dominant
at Nc = 3, becomes increasingly important as Nc in-
creases. The σ pole still moves away from the 400-600
MeV region of the real axis, but the pole trajectory turns
around moving back towards the real axis above 1 GeV
as Nc becomes larger than 10 or so. This occurs rather
naturally in the two-loop results but was only hinted in
some part of the one-loop parameter space. Such a be-
haviour would indicate that while the σ is predominantly
non-qq at Nc = 3, it does have a qq component. As we
show here, it is this component that ensures FESRs are
satisfied. Regge expectations then hold at all Nc . In-
deed, imposing this as a physical requirement places a
constraint on the second order LECS: a constraint read-
ily satisfied with LECs in fair agreement with current
crude estimates.

Thus chiral dynamics already contains the resolution
of the paradox that was the motivation for this study:
namely how does the suppression of I = 2 Regge ex-
changes happen if resonances like the ρ and σ are intrin-
sically different. We will see that the σ may naturally
contain a small but all important qq component. At large
Nc this would be the seed of this state. As Nc is lowered
this state will have an increased coupling to pions, and
it is these that dominate its existence when Nc = 3. We
will, of course, discuss the range of Nc for which the IAM
applies and where replacing the LECs (at Nc = 3) with
their leading Nc form is appropriate.
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II. SEMI-LOCAL DUALITY AND FINITE
ENERGY SUM RULES

A. Regge theory and semi-local duality

Regge considerations lead us to study s-channel ππ
scattering amplitudes with definite isospin in the t-
channel, labeled AtI(s, t). These can, of course, be writ-
ten in terms of amplitudes with definite isospin in the
direct channel, AsI(s, t), using the well-known crossing
relationships, so that

At0(s, t) =
1

3
As0(s, t) + As1(s, t) +

5

3
As2(s, t)

At1(s, t) =
1

3
As0(s, t) +

1

2
As1(s, t)− 5

6
As2(s, t)

At2(s, t) =
1

3
As0(s, t)− 1

2
As1(s, t) +

1

6
As2(s, t).(1)

It is convenient to denote the common channel threshold
by sth ≡ tth ≡ 4m2

π. The amplitudes of Eq. (1) have
definite symmetry under s → u and this will be reflected
in writing them as functions of ν = (s−u)/2, a variable
for which ν = s = −u along the line t = tth. To check
semi-local duality, we need to continue the well-known
Regge asymptotics at fixed t down to threshold. To do
this we follow [25] with:

ImAtI
Regge(ν, t) =

∑

R

βR(t)Θ(ν)
[

α′2 (ν2 − ν2th)
]αR(t)/2

,

(2)

where as usual the αR(t) denote the Regge trajectories
with the appropriate t-channel quantum numbers, βR(t)
their Regge couplings and α′ is the universal slope of
the qq meson trajectories (∼ 0.9 GeV−2). The crossing

function Θ(ν) =
[

1 − ν2th/ν
2
](1+γ)

having γ = 0 for s−
u-even amplitudes, and γ = 1/2 if they are crossing-odd,
ensures the imaginary parts of the amplitudes vanish at
threshold, while being unity when ν is large. νth is the
value of ν at threshold, viz. νth = (sth + t)/2. For the
amplitude with I = 1 in the t-channel, for which γ = 1,
the sum in Eq. (2) will be dominated by ρ-exchange with
a trajectory α(t) = α0 + α′ t that has the value 1 at
t = m2

ρ and 3 at t = m2
ρ3

[26], i.e. α0 = 0.467 and

α′ = 0.889 GeV−2. For isoscalar exchange the dominant
trajectories are the Pomeron with αP (t) = 1.083 + 0.25t
(with t in GeV2 units) [27]1 and the f2-trajectory which
is almost degenerate with that of the ρ. For the exotic
I = 2 channel with its leading Regge exchange being a
ρ− ρ cut, we expect α(0) << αρ(0), and its couplings to
be correspondingly smaller.

1 Because of the rapid convergence of the sum rules we consider,
the fact the Pomeron form used violates the Froissart bound is of
no consequence. This has been explicitly checked by also using
the parametrization of Cudell et al. [28].

Semi-local duality between Regge and resonance con-
tributions teaches us that

∫ ν2

ν1

dν ν−n ImAtI
resonance(ν, t) ≃

∫ ν2

ν1

dν ν−n ImAtI
Regge(ν, t) ,

(3)

the “averaging” should take place over at least one reso-
nance tower. Thus the integration region ν2 − ν1 should
be a multiple of 1/α′, typically 1 GeV2. We will consider
two ranges from threshold to 1 GeV2 and up to 2 GeV2.
This duality should hold for values of t close to the

forward scattering direction, and so we consider both t =
0 and t = tth. The difference in results between these two
gives us a measure of the accuracy of semi-local duality,
as expressed in Eq. (3). Since we are interested in the
resonance integrals being saturated by the lightest states,
we consider values of n = 0 to n = 3. We will find that
with n = 1, 2, 3 the low mass resonances do indeed control
these Finite Energy Sum Rules.

B. Finite Energy Sum Rules from data
(i.e. Nc = 3)

Let us first look at ππ scattering data and see how
well it approximates this relationship, before we consider
the various resonances contributions that make up the
“data” and in turn how these might change with Nc . To
do this it is useful to define the following ratio

RI
n =

∫ ν2
ν1

dν ν−n ImAtI(ν, t)
∫ ν3
ν1

dν ν−n ImAtI(ν, t)
. (4)

The behaviour of such a ratio which tests the way the low
energy amplitudes average the expected leading Regge
energy dependence of Eq. (2) — the leading Regge be-
haviour because only then does the Regge coupling βR(t)
cancel out in the ratio. We will consider these ratios with
ν1 at its threshold value, ν2 = 1 GeV2 and ν3 = 2 GeV2.
In evaluating the amplitudes in Eq. (1), we represent
them by a sum of s-channel partial waves, so that

ImAsI(s, t) =
∑

ℓ

(2ℓ+ 1) ImAI
ℓ (s) Pℓ(zs) , (5)

where the sum involves only even ℓ for I = 0, 2 and odd
ℓ for I = 1. Pℓ(zs) are the usual Legendre polynomials,
with zs the cosine of the s-channel c.m. scattering angle
related to the Mandelstam variables by zs = 1 + 2t/(s−
sth). It is useful to note that the partial wave amplitudes
behave towards threshold like Aℓ ∼ (s − sth)

ℓ, so that
the imaginary parts that appear in Eqs. (5,3,4) behave
like (s− sth)

2ℓ+1 from unitarity.
We use the partial wave parametrization from

Kamiński, Peláez and Yndurain (KPY) [29] to represent
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It = 0 It = 1

n t =tth t=0 t=tth t=0

R
E
G
G
E

0 0.225 0.233 0.325 0.353

1 0.425 0.452 0.578 0.642

2 0.705 0.765 0.839 0.908

3 0.916 0.958 0.966 0.990

KPY

S, P,D

0 0.337 ± 0.093 0.342 ± 0.083 0.479 ± 0.213 0.492 ± 0.191

1 0.567 ± 0.095 0.582 ± 0.082 0.725 ± 0.157 0.741 ± 0.131

2 0.788 ± 0.061 0.815 ± 0.047 0.894 ± 0.072 0.911 ± 0.052

3 0.927 ± 0.023 0.953 ± 0.013 0.971 ± 0.022 0.982 ± 0.011

KPY

S, P

0 0.615 ± 0.169 0.572 ± 0.133 0.743 ± 0.187 0.709 ± 0.103

1 0.796 ± 0.145 0.771 ± 0.120 0.874 ± 0.123 0.861 ± 0.064

2 0.912 ± 0.088 0.909 ± 0.068 0.950 ± 0.062 0.950 ± 0.026

3 0.971 ± 0.038 0.977 ± 0.021 0.984 ± 0.023 0.989 ± 0.006

Table I: RI
n ratios defined in Eq. (4) evaluated using the Regge model of Eq. (2) and the KPY ππ parameterization [29] with

and without D-waves.

the data. The partial wave sum is performed in two ways:
first including partial waves up to and including ℓ = 2,
and second with just the S and P waves. We compare
each of these in Table I with the evaluation of the ra-
tios in Eq. (4) using the leading Regge pole contribution.
This serves as a guide as to

(i) how well semi-local duality of Eq. (3) works from
experimental data in the world of Nc = 3 by com-
paring the Regge “prediction” with the KPY rep-
resentation of experiment, and

(ii) by comparing how well the integrals are dominated
by just the lowest partial waves ℓ ≤ 1 with ℓ ≤ 2.

This will be needed to address how the duality rela-
tion of Eq. (3) puts constraints on the nature of the ρ
and σ resonances. We present these results in Table I.
The n = 1 integral would with t = 0 be closest to aver-
aging the total cross-section. The table shows that the
data follow the expectations of semi-local duality from
the dominant Pomeron and ρ Regge exchange immedi-
ately above threshold to 1 and 2 GeV2. As expected
this works best for n ≥ 1 when the low energy regime
dominates. We see that including just S and P -waves is
not sufficient for this agreement. For the n = 0 sum rule
even higher waves than D are crucial in integrating up to
2 GeV2. In contrast for n = 3 of course just S and P are
naturally sufficient. Higher values of n would weight the
near threshold behaviour of all waves even more and this
region is less directly controlled by resonance contribu-
tions alone but their tails down to threshold, where Regge
averaging is less likely to be valid. Thus we restrict at-

tention to our Finite Energy Sum Rules with n = 1− 3.
It is important to note that all we require is the fact
that the It = 2 exchange is lower lying than those with
It = 0, 1. That the continuation of Regge behaviour
for the absorptive parts of the amplitude actually does
average resonance-dominated low energy data even with
sum-rules with n = 2, 3 is proved by considering the P
and D-wave scattering lengths. With scattering lengths
defined by being the limit of the real part of the appro-
priate partial waves, Eq. (5), as the momentum tends to
zero:

aIℓ = lim
p→0

AI
ℓ (s)/(p/mπ)

2ℓ (6)

where p = 1
2

√
s− sth. Then by using the Froissart-

Gribov representation for the partial wave amplitudes,
we have

a11 =
4

3π

∫

∞

sth

ds

s2
ImAt1(s, tth) (7)

a02 =
16

15π

∫

∞

sth

ds

s3
ImAt0(s, tth) . (8)

If we evaluate these integrals using just the Regge repre-
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sentation from threshold up, we find the following result

m2
π a

1
1 =

1

12π
βρ(tth) (α

′ sth)
αρ

· Γ
(

5

2
+

αρ

2

)

Γ

(

1

2
− αρ

2

)

, (9)

m4
π a

0
2 =

1

120π

∑

R=P,f2

βR(tth) (α
′ sth)

αR

· Γ
(

2 +
αR

2

)

Γ
(

1− αR

2

)

, (10)

where each αR is to be evaluated at t = tth. Analysis of
high energy NN and πN scattering [30, 31] determines
the couplings βR of the contributing Regge poles to ππ
scattering through factorization [25]. In the case of the
ρ the value of the residue is known to be almost propor-
tional to αρ(t) putting a zero close to t ≃ −0.5 (GeV2)
and reproducing the correct ρππ coupling at t = m2

ρ.
This is more like the shape shown in Ref. [32] than that
proposed earlier by Rarita et al. [30, 31]. This fixes
βρ(t = tth) = 0.84 ± 0.13 from the “best value” of the
analysis of Ref. [31]2. The suppression of I = 2 s-channel
amplitudes that is basic to our assumptions here requires
an exchange degeneracy between the ρ and f2 trajecto-
ries, so that βf2 = 3βρ/2, as in the “best value” fit of
Ref. [31]. With the Pomeron contribution proportional
to a ππ cross-section of 16 ± 2 mb for s ≃ 5 − 8 GeV2.
This gives

m2
π a

1
1 = (3.4± 0.5) · 10−2 ,

m4
π a

0
2 = (1.67± 0.19) · 10−3 (11)

to be compared with the precise values found by Colan-
gelo, Gasser and Leutwyler [33] from a dispersive analysis
of ππ amplitudes combining Roy Eqs. and χPT predic-
tions

m2
π a

1
1 = (3.79± 0.06) · 10−2 ,

m4
π a

0
2 = (1.75± 0.03) · 10−3 , (12)

or the recent dispersive analysis by two of us and other
collaborators in [34], which includes the latest NA48/2
Ke4 decay results [35] and no χPT

m2
π a

1
1 = (3.81± 0.09) · 10−2 ,

m4
π a

0
2 = (1.78± 0.03) · 10−3 . (13)

We see that the presumption that Regge parametriza-
tion averages the low energy scattering in terms of sum-
rules with n = 2, 3 is borne out with remarkable accuracy:
far greater accuracy than underlies our fundamental as-
sumption that I = 2 s-channel resonances and t-channel
exchanges are suppressed relative to those with I = 0 and

2 note that the amplitudes defined in [31] are π/4 times those used
here.

LECs(x 103) One-loop IAM

Lr
1 0.60 ± 0.09

Lr
2 1.22 ± 0.08

Lr
3 -3.02 ± 0.06

Lr
4 0(fixed)

Lr
5 1.90 ± 0.03

Lr
6 -0.07 ± 0.20

Lr
7 -0.25 ± 0.18

Lr
8 0.84 ± 0.23

Table II: One-loop IAM LECs we have used [36].

1. This is further supported by the fact that the I = 2D-
wave scattering length as determined in [33, 34] is indeed
a factor of 10 smaller than that for I = 0. The required
cancellation between the ρ and the σ contributions that is
the subject of this paper requires a less stringent relation
than nature imposes at Nc = 3.

III. Nc DEPENDENCE OF ππ SCATTERING
TO ONE LOOP UCHPT: DOMINANT

NON-qq BEHAVIOUR OF THE σ

Having confirmed that semi-local duality between res-
onances and Regge behaviour works for Nc = 3, we turn
to the description of amplitudes within Chiral Perturba-
tion Theory and the Inverse Amplitude Method (IAM).
For orientation we recapitulate first the central results of
Ref. [23] and we will discuss the uncertainties at the end.
We plot in Fig. 1, the imaginary part of the ππ scattering
partial waves, T I

J , with I = J = 0 and I = J = 1 from
unitarised one loop SU(3) χPT, which fits the experi-
mental data very well for Nc = 3. The virtue of χPT is
the fact that the constants all have a dependence on Nc

that is well-defined at leading order.
As anticipated by the work of one of us (JRP) [23],

Fig. 1 shows how the ρ peak narrows as Nc increases
and how its mass barely moves (for the LECs used here
the mass decreases slightly, whereas for those in [23], with
a coupled channel IAM, it increases, but again by very
little). In contrast, any scalar resonance contribution to
the isoscalar amplitude becomes smaller and flatter below
1 GeV. Indeed, the positions of the ρ and σ poles move
along the unphysical sheet as Nc increases from 3. It is
useful to replicate these results here, as shown in Fig. 2.
We see the ρ-pole move towards the real axis, while that
for the σ moves away from the real axis region below 1
GeV. This is, of course, reflected in the behaviour of the
amplitudes with definite t-channel isospin, Eq. (1).
The one-loop LECs we have used are those from

Ref. [36]. These are listed in Table II. Constructing
the IAM analysis of [24] using these LECs, we show
in Fig. 3 the imaginary parts of the resulting ampli-
tudes as functions of s. We see for instance in looking
at ImAt2(ν, tth)/ν

2 that at Nc = 3 the positive σ and
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Figure 1: Absorptive parts of key partial wave amplitudes, ImT I
J (s) with I = J = 0 and I = J = 1. Parameters are fixed from

a coupled channel SU(3) chiral fit at Nc = 3 to data.

400 600 800 1000 1200
Mρ (MeV)

-200

-160

-120

-80

-40

0

−Γ
ρ/2

 (M
eV

) Nc=3

Nc=6
Nc=9
Nc=12

Nc

one-loop SU3 ρ Pole trayectory

0 200 400 600 800 1000 1200
Mσ (MeV)

-700

-600

-500

-400

-300

-200

-Γ
σ/2

 (M
eV

)

µ=770  MeV
µ=1000 MeV
µ=500 MeV

Nc

one-loop SU3  σ  pole trajectory

Nc

Nc=3

6

6

6

12
12

12

Figure 2: Position of the ρ and σ poles in the complex en-
ergy plane as a function of Nc in one loop χPT. Black lines
correspond to the fit described in the text [36] imposing the
leading 1/Nc behaviour of the LECs at the usual renormaliza-
tion scale µ = 770MeV. Note the different vertical scales for
the ρ and σ poles. The lighter points delineate the estimated
uncertainty from the choice of µ. This range is not plotted
for the ρ, since it is so very close to the central line.

negative ρ components cancel. This is not the case as
Nc increases to 12.
To quantify the Nc dependence at different orders in

χPT and with different choices of LECs, we calculate the
value of Finite Energy Sum Rules (FESR) ratios:

F I I′

n (t) =

∫ νmax

νth
dν Im AtI(ν, t,Nc)/ν

n

∫ νmax

νth
dν Im AtI′(ν, t,Nc)/νn

, (14)

for different values of n = 0 − 3, and Nc, t, νmax, and
isospin t-channels I, I ′. The ratio F 10 compares the am-
plitude given by ρ Regge-exchange with that controlled
by the Pomeron, while the ratio F 21 compares the “ex-
otic” four quark exchange with qq ρ-exchange.

We show the results in Table III, and plot the data
in Fig. 4. If Regge expectations were working at one
loop order, we would expect F 10 to tend to 0.66 and for
F 21 to be very small in magnitude, just as they are at
Nc = 3, particularly for a cutoff of 2 GeV2, the results
for which are shown as the bolder lines. However, as Nc

increases we find that the ratio F 10 tends to 0.5, while
that for F 21 tends to −1. This is in accord with the n =
1, 2 sum rules becoming increasingly dominated by the ρ
with very little scalar contribution. This difference is a
consequence of the seeming largely non-qq nature of the
σ being incompatible with Regge expectations. All these
results use values for the one loop LECs that accurately
fit the low energy ππ phase-shifts up to 1 GeV.
Finally, let us recall that the LECs carry a dependence

on the regularization scale µ that cancels with those of
the loop functions to give a finite result order by order.
As a consequence, when rescaling the LECs with Nc, a
specific choice of µ has to be made. In other words, de-
spite the χPT and IAM amplitudes being scale indepen-
dent, the Nc evolution is not. Intuitively, µ is related to a
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Figure 3: Absorptive part of amplitudes with definite t-channel isospin, ImAtI(s, tth)/ν
n. The top pair of graphs have I = 1

and the lower with I = 2, and on the left hand n = 0 and right hand n = 2. Parameters have been fixed from a coupled channel
SU(3) chiral fit at Nc = 3 to data.

heavier scale, which has been integrated out in χPT and
it is customary to take µ between 0.5 and 1 GeV [23, 37].
This range is confirmed by the fact that at these scales
the measured LECs satisfy their leading 1/Nc relations
fairly well [37]. All the previous considerations about the
one-loop IAM have been made with an Nc scaling at the
usual choice of renormalization scale µ = 770 MeV ≃ Mρ,
which is the most natural choice given the fact that the
values of the LECs are mainly saturated by the first octet
of vector resonances, with additional contributions from
scalars above 1 GeV [37].

Thus, in Fig. 2 we have also illustrated the uncertain-
ties in the pole movements for the ρ(770) and f0(600) due
to the choice of µ. Note that the ρ(770) qq behaviour is
rather stable, since for the LECs in Table III the vari-
ation is negligible. Other sets of LECs [23, 38], which
also provide a relatively good description of the ρ(770)
, show a bigger variation with µ, but they always lead
to the expected qq behaviour. In contrast, we observe
that the only robust feature of the f0(600) is that it does
not behave predominantly as a qq . Unfortunately, its
detailed pole behaviour is not well determined except for

the fact that it moves away from the 400 to 600 MeV
region of the real axis and that at Nc below 15 its width
always increases. However, for Nc around 20 or more and
for the higher values of the µ range, the width may start
decreasing again and the pole would start behaving as a
qq .

In Fig. 5 we show how the IAM uncertainty translates
into our calculations of the F 21

n ratio for the most inter-
esting cases n = 2, 3. The thick continuous line stands
for the central values we have been discussing so far,
which at larger Nc tend to grow in absolute value and,
as already commented, spoil semi-local duality. The sit-
uation is even worse when the Nc scaling of our LECs
is performed at µ = 500MeV. This is due to the fact,
seen in Fig. 2, that, with this choice of µ, the σ pole
moves deeper and deeper in to the complex plane and its
mass even decreases. Let us note that this behavior—
compatible with our IAM results when the uncertainty
in µ is taken into account— is also found when study-
ing the leading Nc behavior within other unitarization
schemes, or for certain values of the LECs within the
one-loop IAM [40, 41]. We would therefore also expect
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1 loop SU(3) IAM

t = tth t = 0

n Nc νmax=1 GeV2 νmax=2 GeV2 νmax=1 GeV2 νmax=2 GeV2

F 1 0

n

0

3 0.503 ± 0.008 0.385 ± 0.023 0.500 ± 0.010 0.364 ± 0.027

6 0.527 ± 0.013 0.475 ± 0.033 0.534 ± 0.017 0.468 ± 0.038

9 0.528 ± 0.015 0.522 ± 0.039 0.537 ± 0.020 0.524 ± 0.046

12 0.524 ± 0.015 0.545 ± 0.042 0.533 ± 0.021 0.552 ± 0.050

1

3 0.521 ± 0.008 0.457 ± 0.016 0.526 ± 0.011 0.452 ± 0.019

6 0.529 ± 0.011 0.506 ± 0.022 0.538 ± 0.015 0.507 ± 0.026

9 0.525 ± 0.013 0.525 ± 0.024 0.532 ± 0.016 0.530 ± 0.029

12 0.520 ± 0.012 0.531 ± 0.027 0.526 ± 0.016 0.538 ± 0.030

2

3 0.551 ± 0.011 0.522 ± 0.013 0.575 ± 0.013 0.544 ± 0.016

6 0.536 ± 0.012 0.526 ± 0.016 0.550 ± 0.015 0.538 ± 0.019

9 0.525 ± 0.011 0.525 ± 0.016 0.534 ± 0.015 0.533 ± 0.020

12 0.517 ± 0.010 0.523 ± 0.016 0.524 ± 0.013 0.529 ± 0.019

3

3 0.599 ± 0.015 0.588 ± 0.015 0.654 ± 0.017 0.645 ± 0.017

6 0.551 ± 0.014 0.547 ± 0.015 0.579 ± 0.017 0.575 ± 0.018

9 0.530 ± 0.012 0.530 ± 0.014 0.547 ± 0.016 0.547 ± 0.017

12 0.519 ± 0.010 0.521 ± 0.012 0.530 ± 0.013 0.532 ± 0.015

F 2 1

n

0

3 -0.441 ± 0.021 -0.220 ± 0.045 -0.312 ± 0.029 -0.073 ± 0.058

6 -0.415 ± 0.050 0.012 ± 0.057 -0.259 ± 0.057 0.180 ± 0.059

9 -0.479 ± 0.068 0.059 ± 0.083 -0.319 ± 0.080 0.230 ± 0.079

12 -0.552 ± 0.074 0.047 ± 0.105 -0.399 ± 0.073 0.221 ± 0.097

1

3 -0.355 ± 0.021 -0.269 ± 0.021 -0.193 ± 0.022 -0.104 ± 0.023

6 -0.438 ± 0.047 -0.228 ± 0.052 -0.284 ± 0.051 -0.074 ± 0.052

9 -0.538 ± 0.054 -0.262 ± 0.077 -0.396 ± 0.068 -0.113 ± 0.078

12 -0.621 ± 0.060 -0.317 ± 0.093 -0.493 ± 0.073 -0.170 ± 0.097

2

3 -0.157 ± 0.043 -0.133 ± 0.036 0.107 ± 0.039 0.123 ± 0.032

6 -0.382 ± 0.053 -0.299 ± 0.054 -0.171 ± 0.054 -0.100 ± 0.053

9 -0.530 ± 0.056 -0.415 ± 0.066 -0.354 ± 0.063 -0.247 ± 0.069

12 -0.630 ± 0.053 -0.505 ± 0.072 -0.481 ± 0.062 -0.355 ± 0.078

3

3 0.175 ± 0.062 0.176 ± 0.058 0.578 ± 0.042 0.577 ± 0.040

6 -0.193 ± 0.066 -0.169 ± 0.065 0.204 ± 0.057 0.217 ± 0.056

9 -0.407 ± 0.062 -0.369 ± 0.066 -0.054 ± 0.061 -0.030 ± 0.063

12 -0.541 ± 0.055 -0.497 ± 0.063 -0.233 ± 0.060 -0.200 ± 0.064

Table III: Ratios for 1 loop UChPT using LECs from a single channel fit

that in these treatments semi-local duality would deteri-
orate very rapidly. In [40], there is the f0(980), as well
as other scalar states above 1300 MeV, but all of them
seem insufficient to compensate for the disappearance of
the σ pole. As we will discuss in Sect. V, this is because
the contributions of the f0(980) resonance and the region
above 1300 MeV to our F IJ

n ratios are rather small, and
in [40] they seem to become even smaller, since all those
resonances become narrower as Nc increases. Of course,
as pointed out in [40] this deserves a detailed calculation
within their approach.

In Fig. 5 we also find that the F 21
n are much smaller

and may even seem to stabilise if we apply the Nc scaling
of the LECs at µ = 1000MeV. In such a case, the σ pole,
after moving away from the real axis, returns back at

higher masses, above roughly 1 GeV. For simplicity we
only show F 21

n for the t = 0 case, but a similar pattern
is found at t = 4M2

π: the turning back of the σ pole at
higher masses helps to keep the F 21

n ratios smaller. This
behaviour follows from the existence of a subdominant
qq component within the f0(600) with a mass which is at
least twice that of the original f0(600) pole. However, at
one-loop order such behaviour only occurs at one extreme
of the µ range. In contrast, as we will see next, it appears
in a rather natural way in the two-loop analysis
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Figure 5: Evolution of the F 21

n ratio calculated with the one-
loop IAM when the leading 1/Nc behaviour of the LECs is
imposed at different choices of the renormalization scale µ.

IV. Nc DEPENDENCE OF ππ SCATTERING TO
TWO LOOP UCHPT: SUBDOMINANT

qq COMPONENT OF THE σ

Now let us move to two loop order in χPT [21] and
see if this situation changes. The IAM to two loops for
pion-pion scattering was first formulated in [15], and first
analysed in [19]. With a larger number of LECs appear-
ing, we clearly have more freedom. In studying the 1/Nc

behaviour, Peláez and Rios [24] consider three alterna-
tives within single channel SU(2) chiral theory for fix-
ing these, which we follow here too. These three cases
involve combining agreement with experiment with dif-
ferent underlying structures for the ρ and σ. Agreement
with experiment for the I = 0 and 2 S-waves and the
I = 1 P -wave is imposed by minimising a suitable χ2

data.
Our whole approach is one of considering the 1/Nc cor-
rections to the physical Nc = 3 results. Consequently,
to impose an underlying structure for the resonances, we
note that if a resonance is predominantly a qq meson,
then as a function of Nc , its mass M ∼ O(1) and width
Γ ∼ O(1/Nc). Taking into account the subleading orders
in 1/Nc , it is sufficient to consider a resonance a qq state,
if

M qq
Nc

= M0

(

1 +
ǫM
Nc

)

, Γ qq
Nc

=
Γ0

Nc

(

1 +
ǫΓ
Nc

)

, (15)

whereM0 and Γ0 are unknown but Nc-independent, with
ǫM and ǫΓ are naturally taken to be one. Thus for a qq
state the expected MNc

and ΓNc
can be obtained from

those generated by the IAM,

M qq
Nc

≃ MNc−1

[

1 + ǫM

(

1

Nc
− 1

Nc − 1

)]

= MNc−1 + ∆M qq
Nc

, (16)

Γ qq
Nc

≃ Nc − 1

Nc
ΓNc−1

[

1 + ǫΓ

(

1

Nc
− 1

Nc − 1

)]

=
Nc − 1

Nc
ΓNc−1 + ∆Γ qq

Nc
. (17)

We therefore define an averaged χ2
qq to measure how

close a resonance is to a qq behaviour, using as uncer-
tainty the ∆M qq

Nc
and ∆Γ qq

Nc

χ2
qq =

1

2n

n
∑

Nc=4





(

M qq
Nc

−MNc

∆M qq
Nc

)2

+

(

Γ qq
Nc

− ΓNc

∆Γ qq
Nc

)2


 .

(18)

This χ2 is added to χ2
data and the sum is minimised. Case

A is where the data are fitted assuming that the ρ is a qq
meson, while Case B assumes that both the σ and the ρ
are qq states. Lastly, Case C is where we minimize χ2

data
and just χ2

qq for the σ.

We show in Table IV the values of the χ2 contributions
for each case, where we sum over Nc from 3 to 12. The
two-loop LECs [24] for each case are shown in Table V.
We see from Table IV that constraining the ρ to be a qq
state by imposing Eq. (17) is completely compatible with
data at Nc = 3. In contrast, imposing a qq configuration
for the σ gives much poorer agreement with data and can
distort the simple structure for the ρ. It is interesting to
point out that, the lower energy at which such a sigma’s
qq behaviour emerges, the higher energy at which the ρ
pole moves with Nc. Therefore, as much as we try to
force the σ to behave as a qq meson, less the ρ meson
does. However, requiring a qq composition for the σ for
larger Nc causes no such distortion.
In all parameters sets at two loops, including Case A,

which fits the data best and in which the ρ has a clear qq
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IAM Fit χ 2

data χ 2

ρ,qq χ 2

σ,qq χ 2

σ,qq,Nc=9 χ 2

σ,qq,Nc=12

Case A: ρ as qq 1.1 0.9 15.0 4.8 3.4

Case B: ρ and σ as qq 1.5 1.3 4.0 0.8 0.5

Case C: σ as qq 1.4 2.0 3.5 0.6 0.5

Table IV: Values of the χ2 for the different SU(2) fits
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Figure 6: Absorptive parts of the I = J = 0 partial wave amplitude, ImT 0

0 (s), at one loop with the parameters of an SU(3) fit
(cf the corresponding coupled channel fit in Fig. 1) and at two loops an SU(2) fit with Nc = 3 to data below 0.9 GeV.These
both involve only the ππ channel and so the strong inelastic effects from KK threshold are not included, in contrast to Fig. 1.

LECs Case A Case B Case C

lr1(x 103) -5.4 -5.7 -5.7

lr2(x 103) 1.8 2.5 2.6

lr3(x 103) 1.5 0.39 -1.7

lr4(x 103) 9.0 3.5 1.7

r1(x 104) -0.6 -0.58 -0.6

r2(x 104) 1.5 1.5 1.3

r3(x 104) -1.4 -3.2 -4.4

r4(x 104) 1.4 -0.49 -0.03

r5(x 104) 2.4 2.7 2.7

r6(x 104) -0.6 -0.62 -0.7

Table V: Two-loop IAM LECs for the different cases we have
used [24].

structure, we do see a subleading qq behaviour for the σ
meson emerge between 1 and 1.5 GeV2. This is evident
from Fig. 6 where the imaginary part of the I = J = 0
amplitude is plotted. We see a clear enhancement above
1 GeV emerge as Nc increases. That this enhancement
is related to the σ at larger Nc can be seen by tracking
the movement of the ρ and σ poles at two loops, and

comparing this with the one loop trajectories in Fig. 2.

We see clearly how the σ pole moves away as Nc in-
creases above 3, just as in the one loop case, but then
subleading terms take over as Nc increases above 6 and
the σ pole moves back to the real axis close to 1.2 GeV.
This clearly indicates dominance of a qq component in
its Fock space, which may well be related to the exis-
tence of a scalar qq nonet above 1 GeV, as suggested in
[17, 39, 42–44]. This is directly correlated with the en-
hancement seen in Fig. 6 (the pole movement shown in
Fig. 7) and of course this enhancement makes its pres-
ence felt in the amplitudes with definite t-channel isospin.
Indeed, with It = 2 we see the growth of a positive con-
tribution to the imaginary part that might cancel the
negative ρ component as Nc increases: see Fig. 8 and
compare with the one loop forms in Fig. 3.
In addition, and though these ratios have only been

evaluated at one loop order, as shown in Fig. 1, to go
further one would need to extend this analysis to two or
more loops. Notwithstanding this caveat, we now com-
pute the finite energy sum rule ratios, F (t) I I′

n of Eq. (6)
with these same two loop parameters. These ratios are
set out in Table VI.
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Figure 9: Ratios F I I′

n of Eq. (6) with n = 0− 3. The top four graphs are for F 10, and the lower four for F 21. Two loop χPT
IAM parameters are from the SU(2) fit with Nc = 3 to data: Case A.
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2 loops SU2 ρ as qq

t = 4M2

π t = 0

n Nc νmax=1 GeV2 νmax=2 GeV2 νmax=1 GeV2 νmax=2 GeV2

F 1 0

n

0

3 0.493 0.359 0.488 0.334

6 0.494 0.370 0.492 0.349

9 0.491 0.395 0.490 0.376

12 0.489 0.422 0.488 0.404

1

3 0.509 0.442 0.511 0.434

6 0.496 0.419 0.494 0.407

9 0.488 0.430 0.487 0.418

12 0.485 0.447 0.483 0.436

2

3 0.533 0.505 0.551 0.522

6 0.498 0.457 0.498 0.454

9 0.482 0.452 0.479 0.445

12 0.477 0.460 0.472 0.452

3

3 0.572 0.563 0.618 0.611

6 0.503 0.485 0.511 0.495

9 0.472 0.460 0.468 0.456

12 0.461 0.457 0.451 0.447

F 2 1

n

0

3 -0.421 -0.060 -0.280 0.135

6 -0.536 -0.086 -0.454 0.058

9 -0.648 -0.061 -0.579 0.073

12 -0.748 -0.038 -0.686 0.090

1

3 -0.351 -0.202 -0.183 -0.028

6 -0.438 -0.196 -0.335 -0.069

9 -0.578 -0.215 -0.497 -0.102

12 -0.699 -0.227 -0.629 -0.121

2

3 -0.173 -0.123 0.097 0.139

6 -0.249 -0.152 -0.069 0.027

9 -0.435 -0.248 -0.294 -0.105

12 -0.594 -0.314 -0.477 -0.192

3

3 0.146 0.156 0.570 0.575

6 0.102 0.112 0.485 0.488

9 -0.121 -0.073 0.249 0.275

12 -0.332 -0.216 0.012 0.092

Table VI: Ratios for two-loop UChPT using the LECS of Case A.

We should be just a little cautious in recognising the
limitations of the single channel approach we use here at
two loop in χPT. Despite the unitarisation, we are re-
stricted to a region below 1 GeV, where strong coupling
inelastic channels are not important. We see in Fig. 7
(and Fig. 6) that the sub-dominant qq components move
above 1 GeV as Nc increases beyond 10 or 12. Conse-
quently, if we take Nc much beyond 15 without including
coupled channels, we do not expect to have a detailed de-
scription of the resonances up to 2 GeV2. However, in
the scenario where the sigma has a subdominant qq , it
should be interpreted as a Fock space state that is mixed
in all the f0 resonant structures in that region [45], which
survives as Nc increases. Then it is easy to see that its
contribution would be dominant in our ratios, and still

provide a large cancellation with the ρ contribution. The
reason is that, when this subdominant qq component ap-
proaches the real axis above 1 GeV, it has a much larger
width than any other f0 resonant state in that region.
For instance, we see in Fig. 7 that for Nc = 12, the
width of the qq subcomponent in the sigma is roughly 450
MeV, whereas the width of any other qq component that
may exist in that region would have already decreased
by 3/12 = 1/4. Since the other components would be
heavier and much narrower their contributions would be
much smaller than that of the qq state subdominant in
the σ. Note that it is also likely that some of the f0’s may
have large glueball components (see, for instance, [44]),
which also survive as Nc increase, but then their widths
would decrease even faster—like 1/N2

c , and our argument
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would apply even better. For the scenario when we do
not see the sigma subdominant component (as in Fig. 4),
we still expect that the other resonances by themselves
will not be able to cancel the ρ contribution, so that the
IAM would still provide a qualitatively good picture of
this “non-cancellation”. For this reason, although the
IAM much beyond Nc = 15 may not necessarily yield a
detailed description of the resonance structure, we expect
the Nc behaviour of the ratios to be qualitatively correct
for both scenarios even at larger Nc.
Additional arguments to consider the IAM only as a

qualitative description beyond Nc = 15 or 30 have been
given in [38] since the error made in approximating the
left cut, as well as the effect of the η′ may start to become
numerically relevant around those Nc values.
Remarkably we see with two loop χPT, that the uni-

tarised amplitudes do reflect semi-local duality with I =
2 in the t-channel suppressed. This is most readily seen
from the plots of the ratios F I I′

n for the two loop am-
plitudes shown in Fig. 9 (to be compared with the one
loop ratios of Fig. 4). For F 21

n , it is clear that, if only
considering the integrals up to 1 GeV2, the ratios are still
not small in magnitude. Indeed, their absolute value in-
creases with Nc . However, integrating up to 2 GeV2

takes into account the sub-dominant component, and
then the ratios stabilise at much smaller values for all
Nc , consistent with expectations from semi-local dual-
ity.

V. THE EFFECT OF HEAVIER RESONANCES

So far we have restricted the analysis of the Nc be-
haviour to the ρ and σ resonances. Of course, one may
wonder what is the effect of heavier resonances on our
analysis and conclusions. In particular, since the sub-
dominant qq component of the σ emerges between 1 and
1.5 GeV2, one might worry about the f0(980) and even
the f0(1370) resonance, since the latter has a width of
several hundred MeV and may overlap with the region
of interest. (The f0(1500) and f0(1710) lie beyond that
energy range and are therefore suppressed by the 1/sn

in the denominator). In addition, we might worry about
resonances in higher waves; in this case the f2(1270) in
the D-wave would yield the largest contribution.
Actually, Fig. 1 has been calculated in an SU(3) cou-

pled channel formalism and includes the f0(980) as a very
sharp drop in ImT 0

0 , which disappears as Nc increases.
By comparing with Fig. 6, with no f0(980) present, it
is clear that, by removing the f0(980) the variation in

the ImT 0
0 integrals, and therefore in the F II′

n of Eq. (6),
is small compared to the systematic uncertainty that we
have estimated as the difference between the t = 0 and
t = tth calculations. Actually, if the f0(980) is included in
a coupled channel IAM calculation, as in Fig. 1, the new
F 21
n values would all lie between our t = 0 and t = tth re-

sults listed in Table III without the f0(980). The error we
make by ignoring the f0(980) is, at most 30% of the esti-

mated systematic uncertainty. For sure the f0(980) will
not be able to compensate the ρ contribution. Still, one
might wonder whether this is also the case at two-loops if
the f0(980) or f0(1370) have a qq component around 1 to
1.5 GeV2 that survives when Nc increases. However, at
least the lightest such component would be precisely the
same qq state that we already see in the f0(600). Actu-
ally the interpretation of the IAM results is that all these
scalars are a combination of all possible states from Fock
space [45], namely, qq , tetraquarks, molecules, glueballs,
etc...., but as Nc grows only the qq survives between 1
and 1.5 GeV2, whereas the other components are either
more massive or disappear in the deep complex plane.
And it is precisely that component, which we already
have in our calculation, the one compensating the ρ con-
tributions, as we have just seen above.
In the very preliminary interpretation of [45], the qq

subdominant component of the f0(600) within the IAM
naturally accounts for 20-30% of its total composition.
This is in fairly good agreement with the 40% estimated
in [46]. Indeed, given the two caveats raised by the
authors of [46], their 40% may be considered an upper
bound. Firstly, this 40% refers to the “tree level masses”
of the scalar states. These mesons, of course, only ac-
quire their physical mass and width after unitarization,
which is essentially generated by ππ final state interac-
tions. Intuitively we would expect these to enhance the
non-qq component, and so bring the qq fraction below
the “bare” 40%. Secondly in [46] the authors also sug-
gest that ““a possible glueball state is another relevant
effect” not included in their analysis. In [45], the glue-
ball component is of the order of 10%. Consequently, the
results of [46], those presented here and in [45], are all
quite consistent.
Finally, we will show that the contribution of the

f2(1270) to the FESR cancellation, even assuming it fol-
lows exactly a qq leading Nc behaviour, is rather small
and does not alter our conclusions. All other resonances
coupling to ππ are more massive and therefore less rele-
vant.
In order to describe the I = 0 J = 2 channel we will

again use the parametrization of KPY in terms of the
I = 0, J = 2 phase-shift δ02 , namely

A 0
2 =

1

σ(s)

1

cot δ0(2) − ı
(19)

where cot δ02 , which is proportional to s−M2
f2
, is given in

detail on the Appendix of KPY [29]. Now, by replacing

cot δ02 → Nc

3
cot δ02 . (20)

we ensure that the amplitude itself scales as 1/Nc . This
also ensures that the resonance mass Mf2 is constant,
and its width scales as 1/Nc . We require the f2(1270) to
behave as a perfect qq at leading order in 1/Nc , while re-
producing the KPY fit to the D-wave at Nc = 3. As can
be noticed in Fig. 10, for F 21

2 and F 21
3 , which are the most
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relevant ratios for our arguments, the difference between
adding thisD-wave contribution to our previous results is
smaller than the effect of the sigma qq component around
1 to 1.5 GeV2. For the ratio F 21

3 , the effect of the D-wave
contribution is larger, but it is the effect of the sigma
qq sub-component the one that makes the curves flatter
and bounded between -0.2 and 0.2, whereas the slope is
clearly negative without such a contribution and the ab-
solute value of the ratio can be as large as 0.5 and still
growing. Note that in Fig. 10 we compare our previous
one- and two-loop F 21

n calculations (bolder line) to those
which include the f2(1270) resonance as a pure qq (thin
lines). Therefore the effect of including the f2(1270) does
not modify our conclusions. The main FESR cancellation
at Nc larger than 3 is between the ρ(770) and the sub-
dominant qq component of the f0(600) resonance, which
appears around 1 to 1.5 GeV2.
This is even more evident if we extrapolate our results

to even higher Nc, as in Fig. 11, where all curves include
the effect of the f2(1275). As already explained above,
for such high Nc the IAM cannot be trusted as a precise
description, but just as a qualitative model of the effect of
a qq state around 1 to 1.5 GeV2, which has a width much
larger than the states seen there at Nc = 3 and will dom-
inate the integrals in F 21

n . It is clearly seen that the effect
of such a state will compensate the ρ(770) contribution
and preserve semi-local duality. Other states that sur-
vive the Nc limit in that region—which would be heavier
and much narrower— would only provide smaller correc-
tions to this qualitative picture. Nevertheless, it would
be desirable to extend this study to a more ambitious
treatment of the higher mass states in future work.

VI. DISCUSSION

It is a remarkable fact that hadronic scattering am-
plitudes from threshold upwards build their high energy
Regge behaviour. This was learnt from detailed stud-
ies of meson-nucleon interactions more than forty years
ago. This property is embodied in semi-local duality,
expressed through finite energy sum-rules. Perhaps just
as remarkably we have shown here that the Regge pa-
rameters fixed from high energy NN and πN scattering
yield the correct ππ P and D-wave scattering lengths,
cf. Eqs. (11,12). Indeed, there is probably no closer
link between amplitudes with definite t-channel quan-
tum numbers and their low energy behaviour in the s-
channel physics region than that shown here. What is
more, such a relationship should hold at all values of
Nc . At low energy the scattering amplitudes of pseudo-
Goldstone bosons are known to be well described by their
chiral dynamics, and their contribution to finite energy
sum-rules is dominated by the ρ(770) and f0(600) con-
tributions. However, there are many proposals in the lit-
erature, including the Nc dependence of the unitarised
chiral amplitudes, suggesting that the f0(600), contrary
to the ρ(770), may not be an ordinary qq meson. This is

a potential problem for the concept of semi-local duality
between resonances and Regge exchanges. The reason is
that for I = 2 t-channel exchange it requires a cancella-
tion between the ρ(770) and f0(600) resonances, which
may no longer occur if the f0(600) contribution becomes
comparatively smaller and smaller as Nc increases.

This conflict actually occurs for the most part of
one-loop unitarised chiral perturbation theory parameter
space. In contrast, for a small part of the one-loop pa-
rameter space and in a very natural way at higher order
in the chiral expansion, the σ may have a qq component
in its Fock space, which though sub-dominant atNc = 3,
becomes increasingly important as Nc increases. This is
critical, as we have shown here, in ensuring semi-local
duality for I = 2 exchanges is fulfilled as Nc increases.
As we show in Fig. 11 this better fulfillment of semi-local
duality keeps improving even at much larger Nc, where
the IAM can only be interpreted as a very qualitative
average description.

Thus the chiral expansion contains the solution to the
seeming paradox of how a distinctive nature for the ρ, σ
at Nc = 3 is reconciled with semi-local duality at larger
values of Nc . Indeed, despite the additional freedom
brought about by the extra low energy constants at two
loop order, fixing these from experiment at Nc = 3 au-
tomatically brings this compatibility with semi-local du-
ality as Nc increases. This is a most satisfying result.

The P and D-wave scattering lengths evaluated us-
ing Eqs. (7, 8) that agree so well with local duality at
Nc = 3 can, of course, be computed at larger Nc by
inputting chiral amplitudes on each side of the defin-
ing equations. The scattering lengths themselves involve
only the real parts, while the Froissart-Gribov integrals
require the imaginary parts that are determined by the
unitarization procedure. Explicit calculation shows that
these agree as Nc increases. While the agreement at
one loop order is straightforward, at two loops there is
a subtle interplay of dominant and sub-dominant terms
placing constraints on the precise values of the LECs.
As this takes us beyond the scope of the present work we
leave this for a separate study.

Though beyond the scope of this work, we can then
ask what does this tell us about the nature of the enig-
matic scalars [9]? At Nc = 3, the behaviour of the σ
is controlled by its coupling to ππ. Its Fock space is
dominated by this non-qq component [42, 43, 45]. In
dynamical calculations of resonances and their propaga-
tors, like that of van Beveren, Rupp and their collabo-
rators [39] and of Tornqvist [47], the seeds for the light-
est scalars are an ideally mixed qq multiplet of higher
mass. These seeds may leave a conventional qq nonet
near 1.4 GeV [17, 39, 43, 44], while the dressing by hadron
loops dynamically generates a second set of states, whose
decay channels dominate their behaviour at Nc = 3 and
pull their masses close to the threshold of their major de-
cay: the σ down towards ππ threshold, and the f0(980)
and a0(980) to KK threshold. The leading order in the
1/Nc expansion discussed here may be regarded a pos-
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Figure 10: Results for F 21

n with and without the f2(1270) resonance scaled as a pure qq (thin and bolder lines, respectively).
The left panels are for one-loop IAM results, and the right ones for the two-loop results. The latter contain a subdominant
qq component of the f0(600) around 1 to 1.5 GeV2 whose effect is relevant for the cancellation of F 21

n .
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Figure 11: Results for the F 21

n ratios including the f2(1275) model to the χPT unitarised S and P waves. The bolder lines
correspond to our two loop calculation that yields a subdominant qq component around 1 to 2 GeV2, whereas the thin lines
are the one loop unitarised calculation that does not contain such a component. As explained in the text, beyond Nc = 15 or
30 (gray area) we consider the unitarised amplitudes to provide just a qualitative description of the dominant qq state in the
1 to 1.5 GeV2 region. It is nevertheless clear that the effect of such a qq component brings a large cancellation in the ratios,
improving the fulfillment of semi-local duality.

teriori as providing a quantitative basis for this. The
scalars are at Nc larger than 3 controlled by qq seeds
of mass well above 1 GeV (1.2 GeV for the intrinsically
non-strange scalar). Switching on decay channels, as one
does as Nc decreases, changes their nature dramatically,
inevitably producing non-qq or di-meson components in
their Fock space at Nc = 3 [9]. We see here that the σ
having a sub-dominant qq component with a mass above
1 GeV is essential for semi-local duality, that suppresses
I = 2 amplitudes, to hold.
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J. R. Peláez and G. Rios, arXiv:0905.4689 [hep-ph].

[19] J. Nieves, M. Pavon Valderrama and E. Ruiz Arriola,
Phys. Rev. D 65, 036002 (2002) [hep-ph/0109077].

[20] A. Gomez Nicola, J. R. Peláez and G. Rios, Phys. Rev.
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